Low rank perturbation of regular matrix polynomials
نویسندگان
چکیده
منابع مشابه
Higher rank numerical ranges of rectangular matrix polynomials
In this paper, the notion of rank-k numerical range of rectangular complex matrix polynomials are introduced. Some algebraic and geometrical properties are investigated. Moreover, for ϵ > 0; the notion of Birkhoff-James approximate orthogonality sets for ϵ-higher rank numerical ranges of rectangular matrix polynomials is also introduced and studied. The proposed denitions yield a natural genera...
متن کاملLinearization of regular matrix polynomials
This note contains a short review of the notion of linearization of regular matrix polynomials. The objective is clarification of this notion when the polynomial has an “eigenvalue at infinity”. The theory is extended to admit reduction by locally unimodular analytic matrix functions.
متن کاملDecomposing multivariate polynomials with structured low-rank matrix completion
We are focused on numerical methods for decomposing a multivariate polynomial as a sum of univariate polynomials in linear forms. The main tool is the recent result on correspondence between the Waring rank of a homogeneous polynomial and the rank of a partially known quasi-Hankel matrix constructed from the coefficients of the polynomial. Based on this correspondence, we show that the original...
متن کاملComputing Lower Rank Approximations of Matrix Polynomials
Given an input matrix polynomial whose coefficients are floating point numbers, we consider the problem of finding the nearest matrix polynomial which has rank at most a specified value. This generalizes the problem of finding a nearest matrix polynomial that is algebraically singular with a prescribed lower bound on the dimension given in a previous paper by the authors. In this paper we prove...
متن کاملLow Rank Perturbation of Jordan Structure
Let A be a matrix and λ0 be one of its eigenvalues having g elementary Jordan blocks in the Jordan canonical form of A. We show that for most matrices B satisfying rank (B) ≤ g, the Jordan blocks of A+B with eigenvalue λ0 are just the g− rank (B) smallest Jordan blocks of A with eigenvalue λ0. The set of matrices for which this behavior does not happen is explicitly characterized through a scal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2009
ISSN: 0024-3795
DOI: 10.1016/j.laa.2008.09.002